The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis.
نویسنده
چکیده
Escherichia coli and Bacillus subtilis use different mechanisms of sensing and responding to tryptophan and uncharged tRNA(Trp) as regulatory signals. In E. coli, tryptophan activates a repressor that binds to the trp promoter- operator, inhibiting transcription initiation. In B. subtilis, tryptophan activates an RNA-binding protein, TRAP, which binds to the trp operon leader RNA, causing transcription termination. In E. coli uncharged tRNA(Trp) accumulation stalls the ribosome attempting translation of tandem Trp codons in the leader-peptide coding region of the operon. This stalling permits the formation of an RNA antiterminator structure, preventing transcription termination. In B. subtilis uncharged tRNA(Trp) accumulation activates transcription and translation of the at operon. AT protein inhibits tryptophan-activated TRAP, thereby preventing TRAP-mediated transcription termination. These differences might reflect the unique organizational features of the respective trp operons and their ancestry.
منابع مشابه
Physiological effects of anti-TRAP protein activity and tRNA(Trp) charging on trp operon expression in Bacillus subtilis.
The Bacillus subtilis anti-TRAP protein regulates the ability of the tryptophan-activated TRAP protein to bind to trp operon leader RNA and promote transcription termination. AT synthesis is regulated both transcriptionally and translationally by uncharged tRNA(Trp). In this study, we examined the roles of AT synthesis and tRNA(Trp) charging in mediating physiological responses to tryptophan st...
متن کاملA Bacillus subtilis operon containing genes of unknown function senses tRNATrp charging and regulates expression of the genes of tryptophan biosynthesis.
Strains of Bacillus subtilis containing a temperature-sensitive tryptophanyl-tRNA synthetase produce elevated levels of the tryptophan pathway enzymes, when grown at high temperatures in the presence of excess tryptophan. This increase is because of reduced availability of the tryptophan-activated trp RNA-binding attenuation protein (TRAP). To test the hypothesis that this elevated trp gene exp...
متن کاملPositions of Trp codons in the leader peptide-coding region of the at operon influence anti-trap synthesis and trp operon expression in Bacillus licheniformis.
Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some o...
متن کاملThe mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (MtrA), an enzyme involved in folic acid biosynthesis, and MtrB, a regulator of tryptophan biosynthesis.
mtrA of Bacillus subtilis was shown to be the structural gene for GTP cyclohydrolase I, an enzyme essential for folic acid biosynthesis. mtrA is the first gene in a bicistronic operon that includes mtrB, a gene involved in transcriptional attenuation control of the trp genes. mtrA of B. subtilis encodes a 20-kDa polypeptide that is 50% identical to rat GTP cyclohydrolase I. Increased GTP cycloh...
متن کاملRegulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.
In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in genetics : TIG
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2004